On a Two Variable Class of Bernstein-szegő Measures
نویسندگان
چکیده
The one variable Bernstein-Szegő theory for orthogonal polynomials on the real line is extended to a class of two variable measures. The polynomials orthonormal in the total degree ordering and the lexicographical ordering are constructed and their recurrence coefficients discussed.
منابع مشابه
Bernstein–Szegő polynomials on the triangle
In this work we consider the extension of the one variable Bernstein–Szegő theory for orthogonal polynomials on the real line (see [3]) to bivariate measures supported on the triangle. A similar problem for measures supported in the square was studied in [1]. Following essentially [2] the orthogonal polynomials and the corresponding kernel functions are constructed. Finally, some asymptotic res...
متن کاملNew operational matrix for solving a class of optimal control problems with Jumarie’s modified Riemann-Liouville fractional derivative
In this paper, we apply spectral method based on the Bernstein polynomials for solving a class of optimal control problems with Jumarie’s modified Riemann-Liouville fractional derivative. In the first step, we introduce the dual basis and operational matrix of product based on the Bernstein basis. Then, we get the Bernstein operational matrix for the Jumarie’s modified Riemann-Liouville fractio...
متن کاملOn the approximation by Chlodowsky type generalization of (p,q)-Bernstein operators
In the present article, we introduce Chlodowsky variant of $(p,q)$-Bernstein operators and compute the moments for these operators which are used in proving our main results. Further, we study some approximation properties of these new operators, which include the rate of convergence using usual modulus of continuity and also the rate of convergence when the function $f$ belongs to the class Li...
متن کاملBernstein-szegő Theorem on Algebraic S-contours
Given function f holomorphic at infinity, the n-th diagonal Padé approximant to f , say [n/n]f , is a rational function of type (n,n) that has the highest order of contact with f at infinity. Equivalently, [n/n]f is the n-th convergent of the continued fraction representing f at infinity. BernsteinSzegő theorem provides an explicit non-asymptotic formula for [n/n]f and all n large enough in the...
متن کاملNumerical resolution of large deflections in cantilever beams by Bernstein spectral method and a convolution quadrature.
The mathematical modeling of the large deflections for the cantilever beams leads to a nonlinear differential equation with the mixed boundary conditions. Different numerical methods have been implemented by various authors for such problems. In this paper, two novel numerical techniques are investigated for the numerical simulation of the problem. The first is based on a spectral method utiliz...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008